Математик приблизился к решению проблемы Гольдбаха

Математик Теренс Тао (Terence Tao) из Калифорнийского университета продвинулся в доказательстве малой (тернарной) проблемы Гольдбаха. Об этом сообщает Nature News. Препринт статьи доступен на сайте arXiv.org.

Название проблем Гольдбаха носят сразу две задачи. Первая, сильная или бинарная проблема звучит так: доказать, что всякое четное число больше четырех представимо в виде суммы двух простых. Вместе с гипотезой Римана эта проблема входит (под номером 8) в знаменитый список проблем Гильберта. Слабая или тернарная проблема звучит следующим образом: доказать, что всякое нечетное число больше пяти представимо в виде суммы трех простых. Из справедливости бинарной проблемы следует справедливость тернарной (в качестве одного из простых в разложении достаточно взять тройку).

Наибольшие продвижения в решении сделаны в направлении тернарной задачи. Так, в 1937 году математик Иван Виноградов доказал, что все достаточно большие (то есть большие некоторого фиксированного N) нечетные числа можно представить в виде суммы трех простых. Его учеником Константином Бороздиным было показано, что граница N в работе Виноградова составляет число порядка 106 846 168. Позже она неоднократно уменьшалась и в настоящее время лучший порядок оценки - 1043 000,5.

Полученные результаты все еще не позволяют проверить исключительные случаи теоремы Виноградова на компьютере, поэтому работа в этом направлении ведется достаточно активно. Теренсу Тао удалось доказать, что всякое нечетное число представимо как сумма не более чем пяти простых чисел. Фактически это ближайший к тернарной проблеме Гольдбаха результат из всех возможных - простые числа больше двойки нечетны, поэтому нечетное число не может быть представлено в виде суммы четырех таких чисел (сумма будет четной). Следующее улучшение результата - сумма трех простых чисел, то есть малая проблема Гольдбаха.

Что касается бинарной проблемы Гольдбаха, то про нее известно много меньше. В настоящий момент есть теорема Ромаре 1995 года, которая утверждает, что любое четное число представимо в виде суммы не более чем шести простых чисел. Из этого результата легко получается, что, в предположении истинности тернарной проблемы Гольдбаха, всякое четное число представимо в виде суммы не более чем четырех простых чисел.

Лента добра деактивирована.
Добро пожаловать в реальный мир.
Бонусы за ваши реакции на Lenta.ru
Как это работает?
Читайте
Погружайтесь в увлекательные статьи, новости и материалы на Lenta.ru
Оценивайте
Выражайте свои эмоции к материалам с помощью реакций
Получайте бонусы
Накапливайте их и обменивайте на скидки до 99%
Узнать больше